
High level overview of Bugle4D implementation

Overview of the 2 core classes of Bugle4D.

AKA level 0.

Although this is a L0 class, it is not a bugle4D class, per se.

It does not directly work with 4 dimensions.

These are the level 1 classes.

Level 2 classes

Further information regarding Project().

A static struct local to c4Point is stored that contains 4d data to enable the extra 4d camera action.

Roughly,

struct QD

{

 float xrot;
//rotation in the Q d.

 float xpt; //point in Qd

};

static QD camqd;

Why ?

Let us look at 3D, to analogy it to what we are doing.

When you have a object in 3d, you can use 2 systems of movement:

Either you move the object closer to the camera; or, you move the camera closer to the object.

Because it truly would be a pain implementing Hollasch`s method of camera movement, I decided to implement the alternative: object movement.

So when a point is Project()ed, before the 4d-3d routines, the camera is operated on the temporary variables.

3D data

Model…

Convert for APIing

Send to API

(glVertex())

Screen

4D data

Model…

Convert for APIing

Project()

Send to API

(Send*())

Screen

During the transforming of model data to data ready for the API, one of the steps is to project to 3D from 4D. This is accomplish by a projection function- either Perspect() or Ortho(), depending on the desired appearance.

For simplicity, I simply said Project() where in fact there is no such function.

I used OpenGL for my core implementation, However, DirectX could be just as easily used.

It should be noted that 4D behavior projected to 3D, projected to 2D, is not necessarily what you would expect. (

bool on

int type

c4Point spotdir

float absbright

class c3Point.

This class functions as a return value for c4Point

float x,y,z

c3Point()

class c4Point

This is the workhorse class.

c3Point(float x,y,z)

~c3Point()

Float x,y,z,q

c4Point()

c4Point(float x,y,z,q)

~c4Point()

Deg2Rad(float degrees)

c3Point Ortho()

c3Point Perspect()

Rotate(float angle, bool axis x, axis y, axis z, axis q)

Scale(float scalar)

Translate(float x, y, z, q)

class c4PointC: public c4Point

With color.

Set(float x,y,z)

~C4PointC()

c4PointC(float r,b,g,a)

Float r,g,b,a

SetC(float r,g,b,a)

float Blend(float c1, c2)

Send3Point(c3Point vert)

class cEngine2API

This class covers up the API calls that concern the code.

It is API-specific code; with a case/

Set(float x,y,z,q)

c4PointC()

SendColor(c4VertexC c)

int currentapi

SelectAPI(API api)

API{DirectX, OpenGL}

Class c4Light : protected c4PointC

Uses a vertex4c format for the color.

bugle4d- the document.

c4Light(float lum, size)

float Distance(c4Point vert)

float Square(float num)

c4PointC Light(c4PointC vert)

cEngine2API(int api = OpenGL)

~cEngine2API()

Class c4Model : protected c4PointC

Contains lights, vertexes	Uses shared vertexes.

Information in local co-ords. 	Uses STL for list of vertexes.	Handles its own rendering.

Local color ;-)

class c4Text : protected c4PointC

char *text

RenderChar(char c)

c4Text(char *c)

~c4Text()

SetTProps(float scale, float nrow)

class cSingle

Singleton class.

All instances of this class are aliases for the first declared one.

